Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach

نویسندگان

  • Kris G. van der Zee
  • E. H. van Brummelen
  • René de Borst
چکیده

In free-boundary problems, the accuracy of a goal quantity of interest depends on both the accuracy of the approximate solution and the accuracy of the domain approximation. We develop duality-based a posteriori error estimates for functional outputs of solutions of free-boundary problems that include both sources of error. The derivation of an appropriate dual problem (linearized adjoint) is, however, nonobvious for free-boundary problems. To derive an appropriate dual problem, we present the domain-map linearization approach. In this approach, the free-boundary problem is first transformed into an equivalent problem on a fixed reference domain after which the dual problem is obtained by linearization with respect to the domain map. We show for a Bernoulli-type free-boundary problem that this dual problem corresponds to a Poisson problem with a nonlocal Robin-type boundary condition. Furthermore, we present numerical experiments that demonstrate the effectivity of the dual-based error estimate and its usefulness in goal-oriented adaptive mesh refinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach

We develop duality-based a posteriori error estimates for functional outputs of solutions of free-boundary problems via shape-linearization principles. To derive an appropriate dual (linearized adjoint) problem, we linearize the domain dependence of the very weak form and goal functional of interest using techniques from shape calculus. We show for a Bernoulli-type free-boundary problem that th...

متن کامل

Goal-oriented Error Estimation for Free-boundary Problems Using the Exact Shape-linearized Adjoint

Since the late 1990s, goal-oriented error estimation and goal-oriented adaptive methods have been developed to control the discretization error in goal functionals of the solution1,2. These methods have mostly been applied to linear and nonlinear problems in solid and fluid mechanics. An important recent development is the extension of goal-oriented adaptive methods to multiphysics problems inv...

متن کامل

Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...

متن کامل

Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...

متن کامل

Goal - Oriented Error Estimation and Adaptivity for theFinite Element

In this paper, we study a new approach in a posteriori error estimation, in which the numerical error of nite element approximations is estimated in terms of quantities of interest rather than the classical energy norm. These so-called quantities of interest are characterized by linear functionals on the space of functions to where the solution belongs. We present here the theory with respect t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2010